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Abstract 

Recent modeling developments have created tradeoffs between attribution-based models, models 
that rely on causal relationships, and “pure prediction models” such as neural networks. While 
forecasters have historically favored one technology or the other based on comfort or loyalty to a 
particular paradigm, in domains with many observations and predictors such as textual analysis, 
the tradeoffs between attribution and prediction have become too large to ignore. We document 
these tradeoffs in the context of relabeling 27 million Thomson Reuters news articles published 
between 1996 and 2021 as debt-related or non-debt related. Articles in our dataset were labeled 
by journalists at the time of publication, but these labels may be inconsistent as labeling 
standards and the relation between text and label has changed over time. We propose a method 
for identifying and correcting inconsistent labeling that combines attribution and pure prediction 
methods and is applicable to any domain with human-labeled data. Implementing our proposed 
labeling solution returns a debt-related news dataset with 54% more observations than if the 
original journalist labels had been used and 31% more observation than if our solution had been 
implemented using attribution-based methods only.  

 
 
 
 
 
 
 
 
 
 
 
 
JEL codes: C40, C45, C55.  
 
Keywords: News, Text Analysis, Debt, Labeling, Supervised Learning, DMR 

 
* Our views do not necessarily reflect those of the Federal Reserve System nor its Board of Governors. Rayl is grateful 
to Matt Taddy. Sinha is grateful to Sameer Agarwal at Google for relating Efron’s paper. Sinha 
(Nitish.R.Sinha@frb.gov) is at the Research and Statistics division of the Federal Reserve Board, 20th Street and 
Constitution Avenue, NW, Washington DC 20551; Rayl (nelsonrayl14@gmail.com) co-authored while he was a 
research assistant at the Board. 



1 
 

1. Introduction 

In academic literature and among practitioners there is a divide between traditional (attribution-

based) statistical techniques and what Efron (2020) calls pure prediction techniques (also 

sometimes pejoratively called black boxes).1  Historically, traditional statistical techniques such 

as linear regressions have belonged to the fields of economics and other social sciences while 

pure prediction techniques such as random forests and neural networks have belonged to the 

fields of data science and computer science. Recent work such as Athey et. al. (2021) has called 

for greater consideration of how these differing technologies which have “historically been 

regarded as standing in opposition to one another” may be carefully synthesized to make better 

predictions, but thus far researchers have tended to favor one technology or the other. While 

preference for attribution techniques or prediction techniques is often driven by taste or loyalty to 

the methods of a given field, the differences between them are material. Traditional statistical 

techniques estimate the effect of candidate variables on an outcome of interest, and as a result a 

forecast created using these techniques has the benefit of being attributed to candidate variables. 

In contrast, pure prediction techniques forego attribution in favor of maximizing forecast 

accuracy. By utilizing a massive number of parameters or non-linear functions, pure prediction 

technologies sacrifice the ability to attribute the forecast to candidate variables, but in return 

promise greater prediction accuracy.2 The differing objectives and methods of these two 

modeling technologies present tradeoffs between attribution and prediction that are rarely 

considered by practitioners of either paradigm. Practitioners of attribution-based methods have 

historically focused on the explanatory power of a model and ignored potentially useful datasets 

 
1 See table 5 of Efron (2020) for a summary of his terminology. 
2 While it is possible to directly map inputs to output in many pure prediction models, it is the computation and 
memory constraints of humans that prevent these models from being interpretable or attributable.  



2 
 

that have too many predictors to fit in their model. On the other side, much of the pure prediction 

and machine learning literature focuses on proving that methods have a high level of accuracy on 

a test set, sometimes without considering the fact that simple models would do just as well (see 

Athey et. al. for an example of flu prediction). We compare performance across these two 

different technologies and attempt to merge the benefits from both technologies to estimate label 

inconsistency in a large text-dataset.  Our findings provide guidance for all domains in which the 

tradeoffs between attribution and prediction are material as well as a blueprint for how these 

historically isolated methods may be combined to improve prediction. 

Text Analysis as a Domain for Attribution and Prediction 

One domain in which neither attribution nor prediction dominates and the tradeoffs between 

these methods may be readily observed is text analysis. A brief scan of the literature reveals the 

usage of methods ranging from simple dictionary-based approaches where the occurrence of 

specific words are counted to the usage of transformer models with hundreds of billions of 

parameters (See Brown et al. (2020) for an example of one of these models). The diversity of 

models and methods used in textual analysis is a result of the richness of textual data itself. The 

ability to format text as individual words, pairs of words, or strings of text combined with the 

diversity and abundance of text gives researchers many candidate variables to build models 

around.  As a result, text models have been developed that range the spectrum of interpretability, 

complexity, and performance, making text analysis an ideal domain for testing the tradeoffs 

between prediction and attribution. Textual data has also proven to be a compelling source of 

information for research and forecasting (See Gentzkow, Kelly and Taddy (2019) to get a sense 

of interest in text as a data source in economics). For example, Baker, Blume, and Stevens 

(2016) find mention of the word “uncertainty” to be a good predictor for a whole host of 
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economic outcomes. While text data is a compelling predictor, the features that make it a rich 

data source for model development and forecasting also present unique problems that must be 

addressed. For one, the sheer size of textual data makes manual inspection of the data 

uneconomical.  Another problem is that unlike experimental data where the data is created as the 

result of an experiment, text data is rarely a result of a targeted experiment, instead it is a by-

product of people going about living their lives.  For example, a common source of text data is 

archived newspapers or journals that contain articles on many subjects. A researcher using one of 

these datasets may want to consider only finance-related text, but without labels specifying each 

article as finance-related or non-finance-related they cannot verify that they are picking up 

finance-related information instead of information on sports or politics.  To address this issue 

many text datasets come with labels that allow a researcher to filter the dataset to their desired 

information. This introduces another problem with textual data – inconsistent labeling and 

concept drift.3 The labels used to classify text may change over time with the introduction of 

new labels or changes in labeling standards. If labeling standards are consistent over time, there 

is still the risk of concept drift as the association between text and label may change over time. 

For example, prior to 2008 an article about housing supply may not have been labeled as 

finance-related, but after 2008 the very same article may be considered as relevant to financial 

markets. A forecaster may want to include the pre-2008 article on housing supply to their 

dataset, but if concept drift is not accounted for this article would be left out. Even if a forecaster 

suspects that a textual dataset is consistently labeled and does not suffer from concept drift, this 

 
3 Concept drift occurs when the statistical properties of a target variable change over time. In this case, we are 
considering changes in the properties that map the information in text to a specific subject label. The concept drift 
tagging literature has historically tried to infer online concept drift, i.e. to provide tags that are consistent with 
standards at the time of concept emergence rather than retrospective tagging which is typically important to 
macroeconomists and political scientists. See Helmbold and Long (1994) for an early example of concept-drift in 
machine learning literature. 
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cannot be verified without reading all of the text. The problem of inconsistent labeling also 

occurs most frequently in the domains in which textual data is most useful. In macroeconomics 

and politics where patterns occur over long time horizons and numeric data that goes back in 

history is nonexistent, textual data offers forecasters and researchers a valuable tool. In these 

domains there is an abundance of historical text that is ready to be digitized, however, this 

textual data is likely to face labeling issues that must be addressed to render the data useful. 

Thomson Reuters News Archive  

To make the discussion of labeling issues concrete, we present the case of the Thomson Reuters 

news archive which contains 27 million news articles published between 1996 and 2021. The 

archive contains all news broadcasted on the Reuters newswire service and is available for 

research, but it was not created for researchers. Instead, the archive is intended for traders and 

analysts who are interested in financial markets. The news articles contained in this dataset range 

in subject from finance to politics and the arts, and each news article is labeled with multiple 

subject tags by journalists as they file a story. Subject tags describe the content of the news 

article and there are over 100 unique subject tags available to journalists such as “US” which is 

used to label news related to the United States and “DBT” which is used to label debt-related 

news. For example, an article about US corporate debt would receive both the “US” and “DBT” 

tags in addition to other tags. For our application, we are interested in isolating all debt-related 

news articles as identified by the “DBT” subject tag. While the subject tags that accompany news 

articles allow a forecaster to isolate the type of news that they are interested in, this dataset spans 

25 years and may be subject to inconsistent labeling. Chart 1 below shows the average number of 

subject tags given to news articles at the annual frequency and suggests that subject tagging 

standards have changed over time. There is a general increase in the number of subject tags 
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given to articles over time with noticeable discontinuity in 2018. Articles published in 2000 have 

on average eight subject tags while articles from 2018 have on average 39 subject tags. 

Chart 1: Average Number of Subject Tags per Article 

 

Note: Average number of subject tags given to news articles by journalists, displayed at the yearly frequency 
from 1996 to 2021. The average number of subject tags gradually increases over the sample before a 
noticeable jump in 2018, an indicator of label inconsistency. 

 

The methodology for tagging news articles appears to have changed over time as earlier in the 

sample journalists had fewer subject tags to choose from. Even if this is not the case, there is still 

the question of concept drift and whether the relation between text and specific tags has changed 

over time. In order to address labeling concerns, we propose a method for identifying whether 

labels are inconsistent over time and backfilling article labels to correct for inconsistent labeling. 

Solution to Inconsistent Labeling 

We treat the problem of inconsistent labels as a two-step problem. In the first step, a forecaster 

selects a sample of “ground truth” observations and accompanying labels which reflect 

consistent labeling standards. If a forecaster is dealing with pre-labeled text, they may select 

recent observations from the dataset which reflect current labeling standards. If the forecaster is 

using unlabeled text, they may select a subset of observations and label them manually according 
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to their desired labeling methodology to obtain “ground truth” observations. In the second step, 

the forecaster fits a classification model on these observations and applies it outside of their 

training sample to backfill the entire dataset with consistent labels. In this sense, the forecaster’s 

objective is to create a model which is capable of reading text and producing consistent labels. If 

the backfilled labels produced by the model differ significantly from pre-existing labels, then 

labeling inconsistency has been identified and the inconsistent labels may be replaced or 

augmented with backfilled labels. Our proposed solution depends on traditional structural 

modeling where the “error” term is formally modeled and used to get to the underlying data 

generating process.  However, in contrast to traditional statistical techniques we utilize pure 

prediction models to implement our solution. Our proposed solution combines methods from 

both prediction and attribution and provides an example of how these methods may be 

practically combined. While our proposed framework allows a forecaster to identify and solve 

problems of inconsistent labeling, the question of what model should be used to classify news 

articles in the second step remains. This question is of paramount importance as the performance 

of a forecaster’s classification model dictates how accurately they can identify labeling 

inconsistency and how effectively they can address problems of inconsistent labeling. Even if a 

forecaster selects a robust set of ground truth observations in step one, an inaccurate 

classification model trained on this data will fail to replicate consistent labeling standards and 

result in the misidentification of label inconsistency and inaccurate backfill results. For this 

reason, we pay particular care to model selection when implementing our proposed solution. 

Model Selection  

In considering what text classification model to use we return to the tradeoffs between attribution 

technology and pure prediction technology. Within the domain of text analysis there are many 
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attribution-based and pure prediction methods available to us. For our use case, we ultimately 

consider one attribution-based method, Distributed Multinomial Regression (DMR), and four 

pure prediction methods, a feedforward neural network, BERT transformer model, random 

forests, and XGBoost. Before selecting our preferred model and implementing our proposed 

solution, we consider the tradeoffs between these different technologies and assess the accuracy 

of each candidate model.  We find that model choice has material consequences for classification 

accuracy and our ability to correct inconsistent labeling.  

Contributions 

This paper makes three main contributions. First, we examine whether the promise of superior 

forecasting performance from pure prediction technology is true in the domain of text analysis. 

Second, in doing so we quantify the tradeoff between attribution and prediction models. Finally, 

armed with a superior forecasting technique, we propose a method for identifying and solving 

issues of inconsistent labeling that combines traditional statistical techniques and pure prediction 

techniques. As a side-effect, we construct a dataset of consistently labeled debt-related news. 

Given the proliferation of text datasets and datasets with human labelled features, forecasters 

across many domains will face the labeling issues that we highlight above. While this paper 

focuses on text analysis, labeling issues are likely to present themselves in human-labeled 

datasets ranging from email spam to MRI images. While the underlying objects that are being 

represented in these datasets is vastly different, they all contain a mapping between features and 

labels that may be analyzed and augmented using our proposed framework. We think our 

proposed solution to labeling issues has wide ranging applicability and that our findings can 

inform how forecasters should think about implementing our proposed framework.  
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The rest of the paper proceeds as follows. Section 2 describes the data we use, the challenges of 

using a massive text dataset, and how we formatted our text dataset into a workable format. 

Section 3 provides an overview of prediction technology and attribution technology, a formal 

description of our proposed labeling solution, and brief descriptions of the candidate text 

classification models that we consider. Section 4 describes the framework that we use to evaluate 

each model and describes performance across our candidate models. Section 5 presents results 

from our proposed backfill technique and discusses findings. Finally, section 6 concludes. 

2. Data 

Thomson Reuters Dataset  

Our dataset consists of all English language news articles published by the Thomson Reuters 

news wire service between 1996 and 2021. This dataset is available through the Thomson 

Reuters News Archive and has been used by researchers such as Londano, Claessens and Correa 

(2021) who use the dataset to calculate a sentiment index for financial stability communication. 

We filter the archive for English language news by setting language equal to “EN”. We then 

filter our data for duplicated news articles using the field “last_article” to ensure that we are only 

picking up the last incidence of each article as some articles are broadcasted multiple times over 

the window in which the news is deemed relevant. We also note an article type called 

TOP_NEWS which is a list of news headlines broadcasted multiple times a day. We take the last 

TOP_NEWS article published each day and remove the other TOP_NEWS articles. After 

applying these filters, we end up with a corpus of 27 million news articles. Articles in the archive 

vary in length with some articles containing a simple headline and accompanying sentence and 

others containing full length news articles with multiple paragraphs. While Thomson Reuters 
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covers many different topics, its audience is primarily the financial community. For context, we 

display the 100 tokens that appear most frequently in our dataset of all news articles, 41 of which 

are directly relevant to finance or the macroeconomy. For this reason, we think that the Thomson 

Reuters dataset is a particularly good source for our objective of creating a debt-related news 

dataset. 

Table 1: Top 100 Most Frequent Tokens 1996 to 2021 

 

Note: The 100 tokens (words) that appear most frequently in the Thomson Reuters News Archive between 
1996 and 2021. A large portion of the tokens are related to finance or the macroeconomy which reflects the 
financial focus of the news source. 

 

At the time of publication, Thomson Reuters news articles are labelled with subject tags by the 

author (a news reporter) that identifies the article’s content. We focus on debt-related articles 

which are labelled with the subject tag “DBT”. Articles with the “DBT” subject tag consider 

both U.S. and non-U.S. debt and are defined by Thomson Reuters as: “Bond and other debt and 
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credit market news, including new issues, yields and other rates, analyses, and market 

performance. Credit and corporate debt; government, agency, municipal and supranational debt; 

eurobonds and asset-backed debt.” While the subject tags provided by Thomson Reuters provide 

a method for quickly filtering news by subject, the tagging standards by which news articles are 

labeled appear to have changed over time. For example, the following article about municipal 

debt was not labeled as debt-related when it was published in July 2004, however, from the 

description of the “DBT” tag we would expect it to be identified as debt-related. 

NEW YORK, July 28 (Reuters) - New Jersey's debt was downgraded one notch on Wednesday 

by a third credit ratings agency, Moody's Investors Service, which expects the state's finances will 

underperform those of its peers despite its stronger economy. Moody's also noted the state's plan 

to borrow as much as $1.93 billion in explaining its decision to cut the state's general obligation 

debt to "Aa3". On Tuesday, Fitch Ratings and Standard & Poor's also cut their ratings on New 

Jersey's debt by one notch. All three ratings agencies were troubled by Democratic Gov. James 

McGreevey's plan to close a budget deficit by selling $1.93 billion of bonds. Republican minority 

leaders had sued to block the sale, arguing it violated the state constitution's balanced budget 

amendment. The Supreme Court of New Jersey on Monday agreed with the Republicans but 

decided it would be too disruptive to block the bond sale, a cornerstone of the state's $28 billion 

budget. But the state's top court did bar governors from ever selling deficit bonds again. Noting 

New Jersey enacted a $2.9 billion spending hike in the budget that began on July 1, Moody's 

added: "... The state's budget problems are likely to continue despite the commencement of (the) 

state economic recovery which began in 2003, and will significantly lag the fiscal recovery seen 

in other states in the Aa2 category." 

Though we cannot confirm label inconsistency from one anecdotal example, the changes in the 

average number of subject tags we observe in Chart 1 and examples such as the article above 
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raise the question of whether there are additional articles from earlier in the sample that would be 

considered debt-related by today’s standards but were not tagged as debt-related when they were 

published. These articles would be missed by a forecaster who simply filtered articles by the 

“DBT” subject tag and would rob the forecaster of important debt-related information. For this 

reason, we aim to identify whether labels are inconsistent and address inconsistent labeling.  

Text Processing 

In order to implement step two of our proposed solution and backfill subject tags, we must first 

transform our dataset of news articles from raw strings of text into a numeric format that our 

candidate text classification models may be trained on. Given that we are dealing with over 27 

million articles, working with text at this scale is as much a big data problem as it is an 

estimation problem. The majority of our candidate models take a document term matrix as input 

as this numeric representation of text is easily machine operable. A document term matrix is a 

sparse matrix in which n rows represent individual news articles and m columns contain counts 

of the number of times that a particular word appears in a given article. This matrix is sparse as 

authors have many words to choose from and word choice is roughly distributed according to 

Zipf’s law (see Zipf (1935) and Ryland et. al (2015) for a more recent examination). To produce 

a document term matrix, we first transform the raw text string of each article into a list of 

unigram tokens (individual words), remove stop words (commonly used words in English such 

as “This”, “The”, “At” etc.), and remove special characters. However, we do not stem tokens as 

this can alter the meaning of a word. For example, we keep “waited”, “waiting”, and “waits” as 

unique tokens instead of converting them all to “wait”. After tokenizing the entire article, we 

keep only the 5000 tokens that are used most frequently across all articles published in the 1996 

– 2021 period. For a given article, the number of times that each of these 5000 tokens appears is 
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counted and this sparse vector of counts is added as a row in the document term matrix. The final 

document term matrix of all Thomson Reuters news articles in our dataset has 27 million rows 

and 5,000 columns, each row representing an article and each column indicating how many times 

a token appears in a given article. In order to clean and compile text at this scale we utilize 

Apache Spark, PySpark, and massive parallelism. Simple tasks such as removing stopwords or 

finding the 5000 most frequently used words become massive computation tasks when 

performed across 27 million articles. We utilize Apache Spark’s functions such as 

StopWordsRemover and CountVectorizer which are optimized for distributed data and 

computation to make these tasks tenable. Data cleaning and compilation is performed across 384 

cores and 2,340 gigabytes of memory. Having described our dataset, we next consider in detail 

the distinction between attribution and pure prediction technologies, formally describe our 

framework for identifying and addressing inconsistent labeling, and briefly describe the 

candidate models that we consider for our application.  

3. Framework 

To clearly distinguish between how our candidate models fit as attribution models or pure 

prediction models, we describe the distinction between these technologies. We then present our 

modeling approach and proposed solution to inconsistent labeling. The notation used in our 

framework closely follows Efron (2020). The data d has n observations of a p-dimensional 

vector of predictors xi and associated real valued responses yi. A general attribution-based model 

assumes there is some known functional form s such that: 

yi = s(xi, β) + εi 
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Scientists wish to learn this functional form s, which can also be interpreted as xi causing yi 

through the functional form s. As long as n, the number of observations, is larger than p, the 

number of predictors, there is the possibility of estimating s as there are enough degrees of 

freedom to estimate a linear functional form. Of course, s could have a non-linear functional 

form in which case indeterminacy is a problem. A pure prediction model does not consider the 

existence of s, the underlying function mapping xi to yi. “A prediction algorithm is a general 

program for inputting a dataset d … and outputting a rule f(xi, d) that, for any predictor vector x, 

yields a prediction y* = f(xi, d).”  

y*i = f(xi, d) 

Models whose focus is on f are pure prediction technologies such as neural networks, random 

forests, and XGBoost. These models vary in form, but all focus on providing a good prediction, 

i.e., y* that is close to y. With pure prediction models, there is no pretense that the functional 

forms that map xi to yi, f and s, are similar to each other. In contrast to attribution-based models, 

the relative size of n and p does not matter. Increases in the number of predictors p generally 

leads to better prediction and pure prediction models encourage more observations n as the 

higher the n the more chances the model has at fitting a candidate functional form. This can lead 

to the problem of overfitting, but having realized this scientists typically withhold part of the 

sample and use this “out-of-sample” data to test the true reliability of the algorithm.  Attribution 

technologies and pure prediction technologies share a combined hope of mapping xi to yi, 

however, attribution models attempt to find s (the underlying mechanism) while pure prediction 

models attempt to find f (the most accurate mapping from xi to yi).  

We follow Athey et al.’s prescription that there is much to be gained from combining pure-

prediction technologies with structural modeling techniques developed in the paradigms of 
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traditional statistics. In our case, the problem of inconsistent labeling or concept drift introduces 

another source of noise to the problem of classifying news articles. As modelers, we get to 

observe y^i, human labels, which is yi mixed with D, the true article labels mixed with distortion 

D that comes from inconsistent labeling or concept drift. As the modeler cannot observe the true 

yi, pure prediction technologies that do not account for D will be hampered as the model 

optimizes over mapping xi to a noisy y^i.  

y^i = f(xi, β) + εi + D 

In the worst case, this can devolve into “garbage in garbage out” as pure prediction technology 

will attempt to minimize the distance between y^i and y*i, the human labels and predicted labels. 

However, using insights from attribution-based technology, we can create a model that does not 

suffer from distortion D and get most out of pure prediction technology. Based on Chart 1 and 

associated discussion, we hypothesize that in our dataset distortion D is unknown before 2018 

but is zero after that. 

Thus, for data after 2018 we assume: 

yi = y^i = f(xi, β) + εI  

Once we have identified a model for the data, s or f, we use our model prediction y*i to get a list 

of article labels without distortion D for the entire sample. By comparing our predictions without 

distortion y*i to predictions with distortion y^i we are able to obtain an estimate of D prior to 

2018 and correct for this distortion using our predictions y*i. In this framework, our ability to 

estimate and correct for D depends crucially on the accuracy of our model, f. Without an 

accurate model, predictions y*i will have no relation to the true labels yi and any comparison 
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with y^i will produce misleading results. We next turn to a consideration of what model f should 

be utilized in our particular application. 

Candidate Models 

As forecasters in the domain of textual analysis, we have many attribution-based and pure 

prediction models available to choose from when implementing our proposed solution. In the 

attribution-based camp, some of the most common techniques available to us include custom 

dictionary approaches (see for example Laver, Benoit and Garry (2003)) or statistical language 

models (for example Hansen, McMohan, & Pratt, (2018)). However, dictionaries can be brittle as 

transferring word usage from one domain to another can be confusing (see for example Laughran 

and McDonald (2011)) and statistical language models depend on subjective choices made by 

the forecaster such as how many topics a document has. An important breakthrough in 

attribution technology came with Taddy (2013) which builds upon Cook’s (2007) work on 

inverse regressions and introduces sufficient reduction for textual data. Taddy (2015) further 

extends this work by providing a way to compute these statistics in parallel via Distributed 

Multinomial Regression (DMR). The DMR model and the sufficient reduction statistic that it 

generates captures all of the information in text for a target variable, in this case the label of the 

article.  This provides comfort as a forecaster is guaranteed to have captured all relevant 

information in the text given some mild assumptions. We consider DMR as the state-of-the art 

benchmark for traditional statistics-based attribution technology, and include it in our list of 

candidate models. While attribution models such as DMR have a number of attractive features, 

the same labeling task can be accomplished with a myriad of pure prediction technologies such 

as neural networks or random forests. Outside of the paradigms of traditional statistics these 

models are the go-to option for classification problems, and we would be remiss to not consider 



16 
 

them for our proposed solution. We include four pure-prediction models, a feedforward neural 

network, BERT transformer model, random forests, and XGBoost to our list of candidate 

models. Table 2 below shows the models we evaluate in our classification problem and identifies 

them as attribution-based models or pure prediction models. 

Table 2: Candidate Models 

 

Note: Classification of each candidate model as an attribution-based model or pure prediction model. 

 

One important question is why we do not consider a simple linear regression, the most traditional 

attribution-based model, in our list of candidate models. A linear regression model is not 

identifiable in our case as the number is predictors is too large and is thus omitted. We briefly 

describe each of our candidate models next.  

DMR Model 

Given that the DMR model is our only attribution-based model, we describe it in greater detail 

than the other models. The Distributed Multinomial Regression (DMR) model (Taddy 2015) 

develops on his earlier work on multinominal inverse regressions (Taddy 2013). This model 

takes a sparse document term matrix of n rows and m columns, one row for each news article and 

one column for each token. Rows of the matrix are filled with counts representing the number of 

times each token appears in a given article. The DMR model also takes a covariate matrix of 

variables related to token counts. In our case, this is a binary vector representing whether an 

article has the ‘DBT’ subject tag or not. For each token (column), gamma lasso regularization is 

used to fit an inverse Poisson regression of the token count on the ‘DBT’ tag covariate.  
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Token ~ DBT  

Coefficients from each inverse Poisson regression are then multiplied by the token counts of a 

given article and scaled by the sum token count of the article. This yields a single sufficient 

reduction statistic for each article that is based on the token counts of the article. Sufficient 

reduction statistics (Cook, 2007) for multinomial predictors have the feature that yi is 

independent of xi given the sufficient reduction. This leads to massive dimension reduction from 

a vector of all tokens in a news article to one sufficient reduction number. Given some 

assumptions about the distribution of token counts, this sufficient reduction number captures all 

information in the article with respect to the covariate. After computing the sufficient reduction 

statistic of each article, we use a logit regression of the ‘DBT’ tag on the sufficient reduction 

statistic to classify articles as debt-related or non-debt-related. Unlike our other models, the 

DMR model is interpretable. One can observe token coefficients and see which tokens are most 

or least likely to result in an article being classified as debt-related or non-debt-related.  The 

ability to view coefficient magnitudes and reduce text to a single sufficient reduction statistic 

places the DMR model firmly in the camp of traditional attribution techniques. We use the R 

package distrom to implement the DMR model.  

Insights from DMR Estimation  

Our lone attribution model permits us a unique view into what information is used to classify 

news as debt-related. Table 3 below shows the top 50 (by coefficient magnitude) tokens from the 

DMR model estimation.  
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Table 3: Top 50 DMR Coefficients by Magnitude 

 

Note: Top 50 token coefficients estimated by the DMR model. The presence of these tokens in a news article is 
likely to result in the news article being classified as debt-related. These tokens indicate that the DMR model 
is using sensible features of the text data to classify articles as debt-related or non-debt-related. 
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These are the intercepts and coefficients estimated in the inverse Poisson regression, token ~ 

DBT, that is fit for each token. The coefficient indicates how many times a token is likely to 

appear in an article given that the article is labeled as debt-related or non-debt-related, with 

larger coefficients and intercepts corresponding to tokens that are more likely to appear in debt-

related articles. In a given article individual tokens appears with a very low probability due to the 

sheer number of words in the English language, something that is captured by the negative 

constant terms in the inverse Poisson regressions. Take for example the token “taxability” which 

has a coefficient of 7.494 and an intercept of -15.168. In articles labeled as debt-related, 

“taxability” is estimated to appear 0.000464 times.4 While this is a low number, it is much higher 

than the 0.000000258 times that “taxability” is expected to appear in articles that are not debt-

related. The ratio of expected counts for debt-related articles to non-debt-related articles is 

e^(coefficient). For example, the word “taxability” is e^7.49 or 1,797 times more likely to appear 

in an article if it is debt-related than if it is not debt-related. With this context, we consider the 

tokens that the DMR deems most important for classifying news articles as debt-related. The 

token with the largest estimated coefficient is “httpswwwfitchratingscomsiteregulatory”. This 

Fitch domain name is sensible as Fitch is a large rating agency, and unlike its competition S&P it 

predominately covers debt. Tokens #1, 3, 7, 9, 10, 11, 12, 20, and 22 all feature “Fitch”, 

indicating that the existence of Fitch related tokens in an article is a good indicator that the 

article is debt-related. Tokens #2, 5, 6, 13, and 14 also pertain to a rating agency, but refer to 

“nrsro” which stands for “Nationally Recognized Statistical Ratings Organization”. The first 

prominent token not associated with a rating agency is token #4, “taxability”, which is a 

 
4 The expected number of occurrences of a token in an article may be computed as: e^(intercept + coefficient * 
DBT). For the token “taxability”, given that an article is labeled as debt-related with the DBT tag, the expected 
number of occurrences of the token “taxability” in the article is: e^(-15.168 + 7.493 * 1) = 0.000464. 
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prominent concern for debt instruments. The second such token is token #8, “obligators”, which 

is often how firms or entities that take on debt are referred to. Another prominent token is token 

#15, “scenga”, which is the last name of Fitch’s media relations person – Sandro Scenga. His 

name appears again in token #17, this time with his full name and email address sans special 

characters which are removed in our text cleaning process. Other rating agencies also appear in 

the top coefficients, for example “crisil” at token #30, and “icra” at token #46. Accounting 

related terms start to appear further down the list such as “verifications” at token #28, “actuarial” 

at token #40, and “credit worthiness” at token #41. The coefficients we consider above give a 

concrete example of some of the benefits and limits of attribution models in the domain of text 

analysis. Attribution models provide a forecaster the comfort of verifying that parameters 

estimated by a model are sane. They also permit the forecaster to discover potentially interesting 

relationships such as the link between “taxability” and debt-related news identified above. 

However, because of the large number of predictors in textual data, many relationships are 

uncovered that may not be interesting to a forecaster such as the connection between Fitch 

website links and debt-related news. The parameters that lead to good prediction may not lead to 

compelling attribution. Furthermore, it is unlikely that a forecaster will be able to interpret all 

predictors. In the example above we only look at the intercept and constant of 50 of the 5000 

tokens in our document term matrix, and it is unrealistic for a forecaster to consider all 10,000 

parameters. We next describe the four pure prediction models considered in this study. Given 

that these models are complex and that their architecture is not the focus of this paper, 

descriptions are brief. For each model, the exact hyperparameters we use when implementing the 

model may be found in the appendix.  
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Feedforward Neural Network 

A classic feedforward neural network uses a large number of weights and biases, non-linear 

activation functions, gradient descent, and backpropagation to produce predictions for a target 

variable. These features make neural networks a prime example of pure prediction technology. 

We train our neural network with the same document term matrix described above using the 

following neural network architecture: 5000 neuron input layer, ReLU activation, 100 neuron 

hidden layer, ReLU activation, 10 layer output layer, sigmoid activation. We train the model 

using a mean squared error (MSE) loss function and stochastic gradient descent with a learning 

rate of 0.01. We use the Python module PyTorch to train our neural network. 

BERT Model 

BERT is a transformer model which takes tokenized article text as input instead of a document 

term matrix. Unlike other pure prediction technologies such as neural networks and random 

forests that can be applied across domains, BERT is designed with textual data in mind. Whereas 

our other models only see the number of times a token appears in an article, the BERT model 

sees where each token appears in the article and the context in which the token appears. The 

BERT model is also unique in that it has memory of past inputs. The cost of these features is 

magnitudes greater computation time. This constraint led us to handicap the BERT model in a 

number of ways so that computation time would be tenable.5 For greater detail on BERT see 

Devlin et al. (2018). We use the Python module transformers and the pre-trained DistilBert 

model. 

 
5 Constraints include using the DistilBERT model instead of the full BERT model and restricting the model to only 
look at the first 100 tokens of a given article instead of the entire article. 
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Random Forests 

Random forests is a decision-tree based ensemble method. Our document term matrix is 

bootstrapped and then used to create multiple decision trees based on token counts. Each 

decision tree uses a stochastically selected subset of the tokens to classify articles as debt-related 

or not debt-related. After articles have been classified by each decision tree, the final class 

prediction is the class predicted by the majority of decision trees. Given that the classification 

thresholds of each decision tree are observable one may argue that random forests fall in the 

category of attribution technology. However, given the sheer number of decision trees and the 

fact that features are stochastically selected, attribution is unrealistic. It is the wisdom of many 

trees that gives random forests added value over an individual decision tree, a clear indicator that 

random forests is a pure prediction model. For greater detail on random forests see Breiman 

(2001). We use the ranger R package to implement our random forests model.  

XGBoost  

The last model we consider is another tree-based ensemble method, XGBoost. Similar to random 

forests, XGBoost uses decision trees to classify articles based on the counts of individual words 

in our document term matrix. However, the XGBoost model implements additional trees to 

predict the residuals of prior trees and uses a gradient descent algorithm to minimize a loss 

function when adding decision trees. The final prediction of the XGBoost model is a weighted 

sum of all tree predictions. The usage of gradient descent puts XGBoost models firmly in the 

camp of pure prediction models. XGBoost models are explained in detail in Chen and Guestrin 

(2016). We use the xgboost R package to train our XGBoost model.  
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4. Model Evaluation 

Having introduced our candidate models, we turn to evaluating which model is best for our 

proposed backfill solution. Although attribution-based models and pure prediction models have 

radically different objectives, both classes of model can be evaluated head-to-head based on their 

prediction ability. While we have noted the benefits of interpretation and comfort that attribution 

models provide, for our use case we are interested in the model that best emulates journalist 

tagging standards in the later years of the Thomson Reuters dataset. To assess this, we train each 

of our text classification models on all news articles published in 2018. We then test these 

models out-of-sample on all articles published in 2017 and 2019 as well as in-sample on all 

articles published in 2018 to examine how well each model replicates journalist tags. Recall that 

in order to implement our backfill solution, we must train a text classification model which 

accurately replicates human tagging standards during a period with consistent tagging standards. 

An effective model should tag debt-related and non-debt-related articles similarly to how 

journalists tagged them. Articles published in 2018 are on average labeled with 39.78 subject 

tags. This gives us confidence that articles from 2018 are reflective of current tagging standards 

and that this is an appropriate sample to train our models on. Articles published in 2019 also 

appear to be robustly tagged with an average of 40.88 subject tags. Articles published in 2017, 

however, appear to be less thoroughly tagged with only 16.18 subject tags on average. By testing 

our model out-of-sample on articles from 2017 and 2019 separately, we get a sense of whether 

the performance of each model changes depending on the time period in which it is tested. It is 

important for our backfill model to perform well in earlier periods that are sparsely tagged, and 

testing out-of-sample on articles from 2017 allows us to assess this. 
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Model Accuracy Metrics 

In our model test, a true positive occurs when a model predicts that an article is debt-related and 

it has indeed been labeled as debt-related by the author of the article. A false positive occurs 

when a model identifies an article as debt-related but it was not identified as debt-related by the 

author of the article. Classifying debt-related articles is an imbalanced classification problem as 

only 11% of all news articles are labeled as debt-related. This presents evaluation issues as a 

naïve model which classifies all articles as non-debt-related would achieve a headline accuracy 

of 89%, a reasonable success rate but a useless model.  Due to this imbalance, we evaluate model 

performance based on precision, recall, and F1 score. These measures are defined as follows. 

Precision = True Positive / True Positive + False Positive 

Recall = True Positive / True Positive + False Negative 

F1 Score = 2 * Precision * Recall  / Precision + Recall 

Our objective is to identify as many debt-related articles as possible without falsely identifying 

extraneous articles, and our choice of evaluation statistics reflects this joint optimization 

problem. We consider three widely used measure – precision, recall and F1 score. Precision, the 

ratio of true positives to true positives and false positives, penalizes models for identifying 

extraneous articles. Precision asks the question, “of all articles that the model predicted as debt-

related, what percentage were actually debt-related?”  Recall, the ratio of true positives to true 

positives and false negatives, penalizes models for not identifying debt-related articles. Recall 

asks the question, “of all articles that are actually debt-related, what percentage were identified 

by the model?” F1 score, the harmonic mean of precision and recall, combines these measures. 

For our application, we value Recall as the most important measure as it judges whether a model 
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will identify debt-related articles when it encounters them, even if high Recall comes at the cost 

of including a few additional false positives. For all three evaluation statistics, higher scores 

represent better model performance. 

Performance Across Models 

Results of our model comparison are contained below in Table 4.  

Table 4: Classification Accuracy 

 

Note: Precision, recall, and F1 scores of our candidate models evaluated in-sample and out-of-sample on data 
from 2017, 2018, and 2019. Across samples and metrics, the attribution-based DMR model is outperformed 
by our four pure prediction models with the feedforward neural network and BERT model performing best 
over our favored criterion, recall. 
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The DMR model returns precision scores that are only slightly lower than the other four models 

as it excels at not predicting false positives, articles that are labeled as debt-related by the model 

but not by the journalist.6  Testing on 2017 (2019) data, the DMR model predicted 16,066 

(14,944) false positives, the Feedforward neural network predicted 13,979 (17,105) false 

positives, the BERT model predicted 12,469 (14,179) false positives, the random forests model 

predicted 6,443 (7,276) false positives, and the XGBoost model predicted 9,033 (10,290) false 

positives. In terms of precision, the DMR model beats the feedforward neural network in 2019 

and is on par with the BERT model. The XGBoost and random forests models outperform all 

other models at not identifying false positives, with the random forests model being the clear 

winner. While the precision of the DMR model is worse than many of the pure prediction 

models, the number of false positives that it identifies is within a similar magnitude. Given that 

over a million news articles were published both in 2017 and 2019, a forecaster may be willing 

to falsely identify 8000 additional debt-related articles for the benefits of comfort and attribution 

that the DMR model provides. However, the precision of the DMR model comes at the cost of 

recall. In 2017 (2019) the DMR model predicted 36,167 (59,620) true positives, the feedforward 

neural network predicted 146,452 (100,626) true positives, the BERT model predicted 148,266 

(102,634) true positives, the random forests model predicted 137,881 (92,517) true positives, and 

the XGBoost model predicted 142,680 (96,011) true positives. The DMR model identifies 

significantly fewer debt-related articles than all of the pure prediction models in both 2017 and 

2019. Additionally, given our objective of backfilling sparsely tagged articles from earlier in our 

 
6 Model performance is conditional on the hyperparameters chosen by the forecaster such as learning rate, number 
of epochs, number of trees, etc. When possible, we opt for the default hyperparameters specified by the software 
packages that we use to implement these models. However, we find that across models results are robust to changes 
in hyperparameters. The exact hyperparameters we use may be found in the appendix. 
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sample, it is worrisome that the DMR model performs significantly worse out-of-sample in 2017 

than in 2019. In contrast, the four pure prediction models perform better in 2017 than in 2019. 

Considering that we weight recall as the most important metric of model performance, the low 

recall scores in the DMR rule it out as a possible model for implementing our proposed labeling 

solution. In comparing the recall of our pure prediction models, the BERT model and 

feedforward neural network outperform the random forests and XGBoost models out-of-sample, 

with the BERT model having the best recall by a slight margin. Given that we put the most 

weight on the ability of a model to identify debt-related articles, the results of these tests leave 

the feedforward neural network and BERT model as our two favored models. Before backfilling 

subject tags, the additional criterion of compute time must be considered. Table 5 below shows 

the number of minutes it takes to train each model on all articles published in 2018, roughly 1 

million news articles.7 

Table 5: Computation Costs 

 

Note: Time in minutes that it takes to train each of our candidate models on all news articles published in 
2018, roughly 1 million articles. All models are relatively inexpensive to train in comparison to the BERT 
model which takes a significant amount of time to train. 

 

The DMR model and feedforward neural network are both cheap to train, the random forest and 

XGBoost models are more expensive, and the BERT model is magnitudes more expensive than 

any of the other models to train. Considering compute constraints and model performance in the 

 
7 Just as with model performance, compute time is conditional on the model hyperparameters chosen by the 
forecaster.  
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2017 to 2019 period, we select the feedforward neural network as our preferred model for 

backfilling subject tags. Although we ultimately elect for the feedforward neural network as our 

model of choice, random forests or XGBoost would have also been good choices for this task. 

5. Estimates of Label Inconsistency  

Having selected our preferred model, we turn to implementing our proposed solution. In this 

step, we train our preferred feedforward neural network on all news articles from 2018 to 2021 

and subsequently use this model to identify debt-related articles over the entire 1996 to 2021 

period. We also implement the same steps using the DMR model in order to quantify the 

difference between a pure-prediction-based approach and an attribution-based approach. Articles 

in our 2018 to 2021 training sample have on average 40.72 subject tags and reflect current 

labeling standards, thus we assume that inconsistent labeling distortion D is zero in this period. 

As expected, we find that our neural network identifies significantly more debt-related articles 

than Thomson Reuters journalists with increases in the number of debt-related articles 

concentrated in earlier periods when we suspect that the subject tagging methodology used by 

journalists was most different from present day standards. It is also likely that concept drift is 

most prevalent in earlier periods as changes in the mapping between text and subject tags occurs 

over time, contributing to the discovery of debt-related articles earlier in history. To control for 

changes in the number of articles published by Thomson Reuters each year, we consider the 

number of articles labeled as debt-related in a given year divided by the total number of articles 

published that year. Chart 2 below plots the proportion of all Thomson Reuters news articles that 

are labeled as debt-related by our neural network (blue), DMR model (green), and Thomson 

Reuters journalists (red) over time. 
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Chart 2: Proportion of Articles Labeled as Debt-Related 

 

Note: Proportion of all articles published in a year that are labeled as debt-related by our neural network, 
DMR model, and Thomson Reuters journalists. Differences between neural network labels (blue) and 
Thomson Reuters journalist labels (red) prior to 2009 indicate that labeling standards were different earlier 
in the sample before coming into line with current standards later in the sample. 

 

Our neural network identifies significantly more debt-related articles early in the sample when 

differences in tagging methodology and concept drift are most pronounced, but roughly the same 

number of debt-related articles later in the sample as labeling standards come into line with what 

is in our training sample and D decreases. In the 1996 to 2009 period the average proportion of 

debt-related articles identified by Thomson Reuters journalists is 9.8% (1,256,901 articles in 

total), while the proportion of debt-related articles identified by our neural network is 17.9% 

(2,286,108 articles in total), almost double the number of debt-related articles. In the 2010 to 

2021 period the average proportion of articles identified as debt-related by journalists and our 

neural network are similar with journalists identifying 13.3% (1,819,583 articles in total) of 

articles as debt-related and our neural network identifying 12% (1,657,850 articles) of articles as 

debt-related. A notable feature of the chart above is the uptick in the number of debt-related that 

our neural network identifies between 2002 and the Global Financial Crisis in 2008. Though we 

can only speculate, this uptick may be a result of the fact that prior to 2008 articles mentioning 
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housing prices, subprime mortgages, and other subjects that turned out to be relevant to debt and 

the economy weren’t considered debt-related by journalists. After the Global Financial Crisis 

labeling standards may have changed to consider these articles as debt-related, causing our 

neural network to pick up these additional articles. Another notable feature is how few articles 

the DMR model labels as debt-related. Over the entire 1996 to 2021 sample the average 

proportion of articles labeled as debt-related by the DMR model is only 5.7%. This is consistent 

with our finding that the DMR model has low recall, and highlights the fact that our proposed 

solution to inconsistent labeling is only effective if it is implemented with an accurate model. A 

researcher using the DMR model for this particular problem would fail to identify many articles 

considered debt-related by todays labeling standards. Our findings above provide evidence that 

labeling is inconsistent over time and that our neural network is able to address this issue. If the 

subject tagging methodology of journalists had not changed over time, we would expect the blue 

line to remain close to the red line over the entire sample as the neural network would simply 

identify articles that had already been labeled as debt-related by authors. If the neural network 

was not effective at replicating subject tagging methodology, we would expect to see a 

difference between the blue line and red line in the later period as the neural network failed to 

match to tagging habits of recent article authors, a finding we observe with the DMR model. 

Another sign of efficacy is that in addition to identifying new debt-related articles, our neural 

network is effective at identifying the same debt-related articles that were labeled by authors. 

Over the entire sample, 74% of articles that were identified as debt-related by journalists were 

also identified as debt-related by our neural network. In contrast, only 32% of articles labeled as 

debt-related by journalists were identified as debt-related by the DMR model, a result that is 

complementary to the model recall scores in Table 4. These results hold over the 1996 to 2017 
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period in which articles have significantly fewer subject tags, with our neural network 

identifying 72% of author labeled debt articles and the DMR model only identifying 31%. The 

fact that our neural network identifies the majority of articles labeled as debt-related by 

journalists implies that articles considered as debt-related by earlier tagging standards are likely 

to still be considered as debt-related by today’s standards. This also implies that the new debt-

related articles identified by our neural network are not the result of a fundamental change in 

what news is considered debt-related, but rather an expansion in the type of news that is 

considered debt-related. This is commensurate with our hypothesis that the labeling of debt-

related news has changed over time as the scope of what news is considered debt-related has 

increased. 

As an additional check of our results, we perform our backfill technique using a neural network 

that is trained on a random sample of articles from the entire 1996 to 2021 period. Instead of 

training our neural network on the 4.5 million articles that were published between 2018 and 

2021 and reflect present tagging standards, we train our neural network on 4.5 million randomly 

sampled articles which reflect tagging standards from the whole sample and contain distortion D. 

The results of this exercise are shown in Chart 3 below with the light blue line representing the 

proportion of all articles labeled as debt-related by the random sample neural network. 
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Chart 3: Random Sample Model Labels 

 

Note: Proportion of all articles published in a year that are labeled as debt-related by our neural network, 
Thomson Reuters journalists, and a neural network trained on a random sample of news articles from the 
entire 1996 to 2021 sample. The similarity between the random sample neural network (light blue) and 
Thomson Reuters journalist labels (red) highlights the importance of selecting a training sample with desired 
labeling standards. 

 

In contrast to our standard neural network (blue) which identifies inconsistent labeling D in 

earlier periods, the random sample neural network does not identify any inconsistent labeling D 

with the random sample neural network (light blue) closely tracking journalist labels (red). These 

findings highlight that an integral part of our proposed solution is identifying a training sample 

that reflects desired labeling standards, i.e. a training sample where D, the distortion, is as close 

to zero as possible. The results above also demonstrate the strong recall capability of the neural 

network. The random sample neural network does a good job of replicating the labeling behavior 

of journalists with 77% of all articles labeled as debt-related by journalists also being identified 

as debt-related by the random sample neural network. This is reflected in the similar movement 

of the light blue and red lines above and serves as further evidence that the neural network is a 

good model for our proposed solution.  
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An Estimate of Distortion 

From our results we infer that subject tagging has changed over time, and with our proposed 

backfill technique we have the tools to quantify exactly how labeling has changed. Recall that 

when motivating the case of Thomson Reuters news articles, we did not have definitive evidence 

that tagging standards had changed over time or that labels suffered from concept drift. We had 

evidence there were changes over time in the average number of subject tags per article, 

however, without hand-reading millions of articles there was no way to verify that subject 

tagging methodology had changed over time. Our backfill technique provides a solution to this 

problem and a method for estimating distortion D. If a model is perfectly fit to the tagging 

standards of a specific period (in the sense that it perfectly replicates the way that a human 

author tags an article), then one can apply this model outside of the training period and know the 

degree to which tagging standards have changed over time. While we do not have a model that 

perfectly replicates human tagging behavior, we know how well our models performs in-sample 

and we know how many additional articles it identifies out-of-sample. Our neural network 

trained on articles from the 2018 to 2021 period has an in-sample precision of 0.93, recall of 

0.87, and F1 score of 0.90.  This provides confidence that our model accurately replicates the 

subject tagging norms of the 2018 to 2021 period, an assertion that is necessary to measure how 

tagging norms have changed over time.8 We measure difference in tagging standards (distortion 

D) as the number of additional debt-related articles identified by our backfill model divided by 

the total number of debt-related articles identified by our backfill model. Additional debt-related 

articles are articles that are labeled as debt-related by our neural network but not labeled as debt-

 
8 Note that in-sample F1 score is the most important metric for deriving confidence as it provides a balanced 
assessment of a model’s ability to replicate current labeling standards. A naïve model that classifies all articles as 
debt-related would achieve a recall score of 1, but would be useless for identifying changes in tagging standards 
over time.   
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related by Thomson Reuters authors. If subject tagging has not changed over time, then our 

neural network will not identify any additional articles and this statistic will equal 0. If subject 

tagging is radically different, the number of additional articles identified by our neural network 

will equal to the total number of articles that it identifies, and this statistic will equal 1. In this 

latter scenario, the overlap between debt-related articles identified by the neural network and 

journalists is 0. We find that out-of-sample (1996 to 2017) our neural network identifies 3.5 

million articles in total, of which 1.6 million are additional debt-related articles. This implies that 

subject tagging between the 1996 to 2017 period and 2018 to 2021 period changed by 0.46 or 

46% on average. We calculate this measure of change at the yearly frequency to see how subject 

tagging has changed over time. Chart 4 below shows how differences in tagging standards 

evolve over the 1996 – 2017 period as expressed in percentage.  

Chart 4: Difference in Tagging Standards  

 

Note: Difference in tagging standards over time implied by our neural network and random sample neural 
network. Measured as the number debt-related articles that are identified by each model but not by Thomson 
Reuters journalists divided by the total number of articles identified as debt-related by the model. Our neural 
network (blue) indicates that tagging standards were different prior to 2008 before gradually coming into line 
with current labeling standards later in the sample. 
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Early in the sample tagging standards are almost entirely different to present-day tagging 

standards. In 1996, 86% of articles identified by our neural network as debt-related articles were 

not identified by journalists using the tagging standard of the time. Over the course of our sample 

the difference in tagging standards decreases. In 2012 tagging standards are 21% different and by 

2016 tagging standards are only 10% different. After 2008 the tagging standards used by 

journalists quickly come into line with the tagging standards used by present-day authors. To 

check the robustness of these estimates we perform the same exercise with 100 bootstrapped 

samples of 1 million articles each and construct a 95% confidence interval with the results. We 

find that our estimates of changes in tagging standards over time are robust with our 

bootstrapped estimates (red) displaying roughly the same contour as the results from our 

standard neural network (blue). We also perform this exercise using a random sample neural 

network (light blue) and find minimal difference in tagging standards apart from very early in the 

sample. This is expected as the random sample neural network assumes there is no distortion and 

should mimic journalist labeling. By fitting a model that accurately captures current tagging 

standards, a forecaster may simultaneously solve the problem of inconsistent labels and 

demonstrate that the problem existed in the first place. Additionally, a forecaster can see exactly 

when and to what degree labeling changed over time.  

Implications 

Having identified and backfilled inconsistent article labels, we find the implications of this task 

to be significant. After backfilling subject tags with the feedforward neural network, we identify 

1.7 million (1,660,963) additional debt-related articles that were not present in the 3.1 million 

(3,076,484) articles tagged as debt-related by article authors. With our end goal of creating a 

complete dataset of debt-related news in mind, we ultimately take the union of articles identified 
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as debt-related by Thomson Reuters journalists and our neural network as our final debt-related 

news dataset. This results in a dataset with 4.7 million news articles (4,737,447), a 54% increase 

in dataset size relative to the debt-related news dataset that would have been acquired by a 

researcher who ignored inconsistent labeling issues and simply filtered by the pre-existing 

“DBT” label. Even if we had decided to only take articles identified as debt-related by our neural 

network when constructing our final dataset, we would still end up with a dataset of 3.9 million 

(3,943,958) news articles, a 28% increase in observations relative to a dataset that takes 

journalist labels as given. Our results also emphasize the importance of model selection. Had we 

relied on attribution-based methods (the DMR model), we would have only identified 530,186 

additional debt-related articles which when combined with journalist labels would have 

increased our dataset size by only 17%. Had we only taken articles identified as debt-related by 

the DMR model, our final dataset would only contain 1.5 million (1,528,266) news articles, a 

dataset that has half as many observations as the baseline dataset. In addition to increasing our 

dataset in size by 54%, we also construct a dataset that corrects for concept drift and reflects 

current notions of what counts as debt-related news. This will impact downstream research, the 

predictive power of future models, and any other findings that use this debt-related news dataset. 

It is plausible that in many use cases, the viability of a model or research question hinges on how 

effectively a forecaster is able to address inconsistent labeling. 

6. Conclusion 

We consider the problem of inconsistent labeling in text datasets and propose a solution that 

synthesizes attribution and prediction methods. An integral part of our labeling solution is the 

selection of an accurate text classification model, and we consider the tradeoffs between 

attribution-based models and pure prediction models in the context of labeling 27 million 
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Thomson Reuters news articles. We hope to impress the following findings upon the reader. 

Issues of missing labels, inconsistent labels, or concept drift are likely to plague any dataset with 

human labeling, especially if the dataset covers a long period of history. These labeling issues 

must be addressed, and even if the forecaster does not suspect inconsistent labeling or concept 

drift they should test for the existence of these problems. Using our proposed solution, a 

forecaster may both test for these problems and solve them by backfilling labels with a 

classification model. However, when implementing this backfill strategy and in general, the 

tradeoffs between attribution and prediction are material and should be thoroughly considered 

instead of decided as a matter of taste or convenience. While we focus on text analysis, problems 

of inconsistent labeling are likely to occur in many domains ranging from fraud detection to 

image classification. We demonstrate how by combining insights from attribution methods with 

the power of pure prediction models, these issues may be overcome and the value of 

inconsistently labeled datasets unlocked. We hope that our work motivates practitioners of both 

modeling methods to pay closer attention to methods that are not their own and develop new 

ways to synthesize these methods to achieve better forecasting.  
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Appendix 1: DMR Coefficients 51 - 100 

 
Note: Top 51-100 token coefficients estimated by the DMR model. The presence of these tokens in a news 
article is likely to result in the news article being classified as debt-related. These tokens further indicate that 
the DMR model is using sensible features of the text data to classify articles as debt-related or non-debt-
related. 
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Appendix 2: Hyperparameters 

 

DMR Model (R package: distrom, function: dmr) 

mu = NULL 

bins = NULL 

gamma = 1 

nlambda = 50 

 

Feedforward Neural Network (Python package: PyTorch) 

nn.Linear(5000, 100) 

torch.relu() 

nn.Linear(100, 10) 

torch.relu() 

nn.Linear(10, 1) 

torch.sigmoid() 

 

batch_size = 10 

epochs = 5 

learning_rate = 0.01 

loss_function = torch.nn.MSELoss() 

optimizer = torch.optim.SGD() 

 

BERT Model (Python package: transformers, function: DistilBertForSequenceClassification) 

100 token input. 

6 transformer blocks of feature size of 768 

768 neuron pre-classification laye 

2 neuron output layer 
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tokenizer = transformers.BertTokenizerFast() 

batch_size = 10 

epochs = 1 

learning_rate = 1e-5 

optimizer = transformers.AdamW() 

 

Random Forest (R package: ranger, function: ranger) 

num.trees = 100 

mtry = 70  

min.node.size = 1 

max.depth = NULL 

sample.fraction = 1 

splitrule = gini 

 

XGBoost 

objective = binary:logistic 

eval_metric = auc 

eta = 0.3 

max_depth = 6 

min_child_weight = 1 

subsample = 1 

colsample_bytree = 1 

lambda = 1 

alpha = 0  

nrounds = 10000 

 


